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ABSTRACT

The efficiency of two wide-spread forms of unified equation of state for gas
and liquid was investigated. These forms are simple polynomial equation and
equation with additional exponential terms of density. The last equation is similar
to modified Benedict-Webb-Rubin eguation, The calculations were fulfiled on the
basis of data on thermodynamic properties of methane covering the temperature
range from saturation line up to 620 K at pressures up to 1160 MPa.

The calculations showed that exponential equation ensures higher precision
of approximation of used p,v, T - data than polynomial equation containing the
same number of statistically most important coefTicients. Root mean square
deviations of calculated wvalues of density from initial data for exponential
equation are 1.2 - 1.8 times lower than for polynomial one (at number of
coefficients from 30 to 45). However, both forms of equation are nearly equal

concerning the satisfaction of Maxwell's rule and description of isochoric specific

heat.
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1. INTRODUCTION
At present many empirical equations of state for gas and liquid applicable over
wide temperature and pressure ranges are compiled in the form

H
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where  Z=pwRT is the coefTicient of compressibility, e=pp, i3 the reduced
density, and +=T/T,, is the reduced temperature.

The peculiarity of the equation (1) - so-called modified Benedict-Webb-
Rubin equation - is the presence of exponents of density. These exponents permit
to describe p.v. T - data in a wide range of density with restricted number of terms
of the equation . The initial BWR equation [1] was consecutive modified by
several authors. The most effective form (1) was proposed by Jacobsen and
Stewart [2]. Later on many scientists used this equation. In particular, recently
Outcalt and McLinden [3] compiled equation of state (1) for some new
refrigerants.

The investigators of former USSR used for analytic deseription of

properties of fluids the polynomial equation of state
m 5 mI
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This equation may be interpreted as a part of virial equation of state, theoretically
erounded for gases of low and moderate density. The application of equation (2)

for dense gas and liquid is a convenient mathematical approach. The advantage of



this equation is its simplicity. Eguation (2) was used by Soviet authors at
preparing a series of monographs, for example [4].

Wagner and de Reuck [5)] showed that equation of state in the form (2) for
oxygen, compiled by Syvchev and co-authors [4], describes p.v, T - data worse than
exponential equation, compiled by Stewart and Jacobsen [6]. These equations
contain practically the same numbers of coefficients, but they were compiled on
the basis of different sets of experimental data with use of different weights of
data. Therefore, we decided to compare the accuracy of approximation of the

same massif of data by means of equations (1) and (2).

2. CALCULATIONS
The calculations were fulfiled on the basis of data on thermodynamic
properties of methane. These data were obtained by means of fundamental

equation of state compiled by Setzmann and Wagner [7], that describes

experimental data with high precision. The mentioned equation containes both
polynomial parts and exponential terms with power of density from one to four.
We used 533 values of density in the single-phase region on 24 isobars in
pressure range 0.5 - 1000 MPa and temperature range 94 - 620 K. Fifty values of
density of saturated vapor and liquid, covering the temperature range from the
triple point (90.694 K) to 186 K were used also. On the melting line I8 values of
density of liguid were taken at temperatures from 92 K to 254.8 K (up to reduced
density g/p, =3.57). Accuracy of description of caloric properties was checked by
339 values of isochoric specific heat in the single-phase region up 1o 1000 MPa and

620 K and 50 values of ¢, on the saturation line at temperatures 90.694 - (86 K.



The step of used data in the single-phase region and on the melting line increased
with increase of pressure and temperature,

Equations of state (1) and (2) were compiled by means of specific version of
stepwise regression method, developed by Wagner [8] and extended by de Reuck
and Armstrong [9]. This methed is based on selection of the statistically most
important terms from empirical bank of terms of equation. Bank of terms for
equation (2) contained 80 terms with powers of @ from | to 10 and powers of 7
from 0 to 7. The bank for equation (1) contained additionally in the exponential
part 60 terms with powers of @ from | to 12 and powers of ¢ from 1 to 5.
Therefore, the exponential part of composed equations may contlain more terms
than MBWR - equation. It should be noted, that we do not include the term
containing ¢ for unification of polynomial parts of equations (1) and (2).

At compiling both egquations of state the unified set of weights was used.

The values of weights were calculated by equation

W= _1— X (3)
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where the derivative ZZ/dp was calculated by means of equation of state [7]. The
value of the relative error dp was taken 0.05%.

The calculation of weights according to the formula (3) is based on
assumption that the uncertainties of temperature and pressure are equal zero. This
assumption is correct in our case. At using weights determined by (3) the

deviations of calculated values of density from initial data are nearly equal in

different regions of parameters.



On the basis of p.v, T - data [7] the first series of equations (1) and (1) with
different number of coeffitients (from 30 to 45) was compiled. At compiling these
eguations the Maxwell’s rule was satisfied by using the above-mentioned p.v.T -
data for the saturation line on 25 isotherms.

In the second series of calculations we added the randum errors to the values
of density, calculated by equation of state [7]. These errors were distributed
according to the normal law in the range from —0.05% to +0.05%. By means of

transformed p.v, T - data we simulated the compiling equation of state on the basis
of experimental data. On the basis of these data we compiled new equations of
state in two discussed forms with the same numbers of coefficients. It should be
stressed. that the equations with number of terms more than 34 were obtained by

selection of lower values of significance of individual terms and of the equation as

a whole.
3. RESULTS

By means of compiled equations of state the relative deviations dp of
calculated values of density from smooth or transformed data used at compiling

the equations were determined. The deviations dp, of values of saturated vapor
pressure calculated on the basis of Maxwell's rule from data [7] were determined
also. For the first series of equations the deviations &, of calculated values of
isocharic specific heat from data [7] were determined. For the second series the
deviations &, were calculated using values of ¢, [7] with added random errors
from —0.5% to +0.5%. At calculations of ¢, the equation for isobaric specific heat

¢, of ideal gas presented in [7] was used.



Fig. 1 shows root mean square deviations §p, of calculated values of
density from initial data as a function of the number of coefTicients. As it is clear
from this Figure, exponential equation in all cases ensures higher precision of
approximation of p,v, T - data than polynomial equation with the same number of
terms. Corresponding values of &p, for exponential equation are 1.4 - 1.E times
lower for the first series of equations and 1.2 - 1.4 times lower for the second
SCTies.

Plot of root mean square deviations dp, of calculated values of saturated
vapor pressure from data [7] is shown in Fig 2. This plot in contrast to previous
one is characterized by the scatter of results and does not testify advantages of
exponential equation. In some cases the deviations :apm. for polynomial equation
are lower than for exponential one, especially at calculations on the basis of
transformed data.

Plot of root mean square deviations &, of calculated values of ¢, from
initial data is shown in Fig. 3. At calculations of these deviations § points on
isotherm 94 K and 2 points for saturated liquid at temperatures 94 K and 90.694
K were excluded. For overwhelming majority of equations corresponding
deviations were 10 - 30 % at 94 K and 30 - 50 % at the triple point. The use of
these points at calculation of &, may distort this value and hamper the
comparison of two forms of eguation.

It is interesting to note that the precision of satisfaction of Maxwell’s rule
at above-mentioned temperatures was H(0.03 - 0.08)%. In two cases for
exponential equation when deviations from Maxwell's rule were lower (0.003 -

0,009%%). the corresponding values of 8¢, were significantly lower also (near 3% at



94 K and near 5% at the triple point). This testifies the necessity of very high
precision of satisfaction of Maxwell's rule near the triple point (by increasing the
weights of corresponding data). The most reliable way is to use the data on
isochorie specific heat of liquid at compiling the equation of state.

Fig. 3 shows that two forms of equation of state describe the data on
isochoric specific heat with practically equal accuracy.
4. CONCLUSIONS

A comparison of precision of analytic description of data on
thermodynamic properties of methane in a wide region of parameters by means of
polynomial and exponential equations of state was fulfiled. The comparison
showed that the liter equation with power of density in exponent equal 2 ensures
higher precision of approximation of pv. T - data, Nevertheless, both forms of
equation ensure practically the same precision of satisfaction of Maxwell's rule

and of description of data on isochoric specific heat.
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FIGURE CAPTIONS

Fig.1. Root mean square deviations drs of calculated values of density
from initial data as a function of number of coefficients of equations (1) and (2):
| - for equation (1), 2 - for equation (2), light signs - for the first series of

calculations, dark signs - for the second.

Fig.2. Root mean square deviations dpa of calculated values of saturated
vapor pressure from data [7] as a function of number of coefficients of equations
(1) and (2):

| - for egquation (1), 2 - for equation (2), light signs - for the frst series of

calculations, dark signs - for the second.

Fig.3. Root mean square deviations dc,,,. of calculated values of isochoric
specific heat from initial data as a function of number of coefficients of equations
(1) and (2):

1 - for equation (1), 2 - for eguation (2), light signs - for the first series of

caleulations, dark signs - for the second.
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